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A gyrostat [ 1 1 is a mechanical system S which consists of an invariable 
part Sl and other bodies Sx, variable or rigid. but connected not invari- 
ably with S,. At the same time it is necessary that the motion of bodies 
Sg rel8tiVf3 to SI does not change the in888 geometry of system S. Perma- 

nent motions of a balanced gyrostat under constant gyrostatic moment were 
investigated in detail by volterra [ 2 1. Zhukovskli presented [ 3 1 a 
geometric interpretation of this motion. 

Below are determined permanent motions of 8 heavy gyrostat near an 
immovable point by a scheme snslogous to that used bs Mlodzeevskii 14 1 
for determination of permenent motions of 8 rigid body near an immovsble 

point. 

Let the invsriable part S, of the gyrostat be fixed at one of its 

Points 0 which we will take as the origin of two coordinate systems: a 

stationary system Orq 5 with the vertically directed axis 05, and 8 
moving system Oxyz, the axes of which are directed along the principal 

axes of inertia of the gyrostat about the point 0. on the strength of a 
theorem for addition of velocities. the momentum of the gyrostat about 
the point 0 can be resolved into two components: the vector K. referred 
to the whole system S which results from its translation81 motion, and 
the vector k governed by the motion of S2 relative to S1. We will 8ssume 

that the gyrostatic mOm8ntUm It is cOnSt8nt in magnitude and direction 

relative to S,. The projections of this vector on the moving axes will 

be denoted bs LX, k,, k,, while the projections of K on the same axes 8s 

Ir, = Apt K, = Bq, -iu, = Cr 

Here P, qlr r denote the projections of the vector o, the instantaneous 
sngular velocity of the gyrostat, on the stationers axes, while A, B, C 

1411 
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are the principal moments of inertia of the gyrostat about point 0. 

By the momentum theorem we obtain the following equations of motion 
for a heavy gyrostat near an immovable point: 

A $ -k- (C - B) qr -’ qk, - rk, = P (zqz - YOT3) 

dq 
13 z i (A -- C) rp + rk, - pk, = P (zoys - zoy1) 

C $ i- (11 -- -4) pq i- pk, - qk, :m P (yoyl - 20~2) (1; 

Here x0, yo, z. denote the coordinates of the center of gravity of the 
gyrostat in the moving system of coordinates, P is the weight of the 
gyrostat, and yl, yz, y3 are direction cosines of the axis 05 relative 
to the moving coordinates satisfying the kinematic equations of Poisson 

Let us consider under what conditions the gyrostat will rotate per- 
manently, i.e. rotate about axes which are fixed in the gyrostat. Let 
such rotations exist. Then 

p = cm, ‘I L bw, r = co 

where a, b, cI are the constant direction cosines of the required axis 
in the xyz-system ofcoordinates. In this case the equations of motion 
for the gyrostat become 

Equations (4) possess two integrals 

r12 + T22 + "132 = 1 (5) 

ny1+ by2 -+ cys = v 05) 

multiplying Equations (3) by yl, yg, y3; x0, yo, z. and ix, ky, kza 

respectively. and adding, we obtain 
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(Aay1 + my2 + Ccys) 2 + [(C - B) bcy1 + (A - C) acy2 t (B -4 ah31 co2 f 

+ [(bk, - c$,) ~1 + (~k,~ - a&) ~2 + W, - bk,) rd 0 = 0 (1) 

(Aaro + Bbyo + Cczo) ‘$ + [(C - B) b czo + (A - C) acyo + (B - A) abzol a2 + 

+ [(bk, - ck!,) xo + (ck, - ak,) yo + (ak, - bk,) zol 0 = 0 (8) 

(_4uk, + Bbk, + Cck,) 2 + [(C - B) bck, + (A - C) ack!, -t (B - A) abkJ 09 - 

- P l(3oy2 - ~0~3) k, + (2073 - ~0~1) k, + bon - ~0~2) $1 = 0 (9) 

There are two similar equations (7) and (8) for o. The coefficients 
of these equations must be proportional. If the constant coefficients of 
Equations (8) are denoted by L, M, N, we obtain 

Aw+ Bbr2 + Ccrs (C - B) bq + (A - C) qz + (B - A) aby., 

L 
._ 

M 

(bk, - ck,,) TI+ (ck, - ak,) 7.2 + WV - b&l ~3 

N 

From these one can obtain two independent equations 

(10) 

M [Aayl + Bbrz + Ccys] = L [(C - B) bql + (A - C) my2 + (B - A) abrsl 

N [(C - B) bql + (A - C) aq2 + (B - A) abyd 

= hi’ [(bk, - ck,) yl + (ck, - ak,)y 2 + (ak, - bkx) 721 (Ii) 

Differentiating (10) with respect to t. taking into account Equations 
(4) and the integral (6), we obtain 

_ M [(c - B) bql + (A - C) acra + @ - A) aby31 

= L (/jay1 + Bbr2 + Ccys) - Ly (h2 + Bb” + CC? 

Solving the system of equations (10). (11). (12), we find 

(1,) 

Auyl + Bb*(z i- Cq3 = 
Liy (Au’ + BP + Cc”) 

L”+ M2 

(C _ B) bql + (A - C) acy? + (B - A) abrs = LMv (A$z,;22 + “‘) 

LIVV (r4d + Bb2 + Cc2) 
(bk; - ckJ 71 + (ck, - ak,) TZ tm (ak, - bk,) T3 = -- 

L2 T M2 

(13) 

Thus. for yl, y2, y3 there are five algebraic equations (5). (6). (13) 
with constant coefficients, four of which are linear. The linear equa- 
tions (6). (13) can be considered as a system of homogeneous equations 
relative to yl, y2, y3, v. The determinant of this system must be equal 
to zero; constructing it we obtain 
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D = (Aa2 -f- Bb2 + Cc2) [(C - B) bck, -j- (A - C) ack, i- (B - A) abk,l X 

x 
c 

1 - L+2 (Aa” + Bb2 + Cc2) (ax” + bye -t GO)] = CI (14) 

One condition for the existence oP a nontrivial solution will be 

(C - B) k,bc + (A - C) kpc + (B -A) k:izb = 0 

We observe that the other condition 

L 

I-- p+$p 
(/&$ + Bb2 + Cc”) (am, + byo +- czo) = ‘J 

yields nothing new compared to (15). and will therefore not be considered. 

In satisfying the condition (15) there will be nonzero determinants 
of third order; for example, such will be the determinant located in the 
upper left corner of the determinant D. Consequently, yl, yZ, y3 can be 
determined from the system of nonhomogeneous linear equ&iok with con- 

stant coefficients, i.e. the problem is to find constant yI, y2, yJ. In 
this case Equations (4) yield 

This indicates that the investigated permanent axis will be vertical. 

On the strength of (16) the coefficients of o and w2 in Equation (7) 
are equal to zero, and since, generally speaking, the angular velocity w 
is finite then 

A.0 / dt =- Ii (jr) 

i.e. the gyrostat rotates uniformly about the vertical permanent axis. 

Taking this into consideration as well as condition (15), Equation 
(9) yields 

But then Equation (8) gives an additional condition for direction 

cosines 

(C - B) zobc + (_I - C) yoczc + (B - il) zoab zz= 0 (19) 

Equation (19) is the equation 
permanent axes for a rigid body. 
for permanent axes of a balanced 
for surface of the vectors k(kx, 

for the Mlodzeevskii-Staude cone of 

Equation (15) becomes the cone equation 
gyrostat. Equation (18) is the equation 

kY’ kZ) and ro(zo, yo, 2,). 
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The vertical permanent axis must lie simultaneously on these three 
surfaces. In the general case the surfaces (15), (18). (19) possess a 
unique common straight line. Its equation in the moving system of coordi- 
nates is 

Here R,, Ry, R, are the projections of the vector It = k x r. on the 
moving axes. 

The angular velocity of permanent motion of the gyrostat can be found 
from any one of the equations of motion which can be put in the follow- 
ing form: 

(A - C) (B - A) (C - B) R,R,,R,02 - II (.lR,k, + BRUkI, + CR,k,) w + 

+ nP (AR,zo + RR,,?/” + CRpo) = 0 (21) 

Here 

,I = I/@ - B)2 RU2R, __ 2 + (ia - C)z R,2R,v2 + (R - J)a Rx2Ry2 

It is clear from this that of any two segments of a straight line in 
(20) only one can be the axis of permanent rotation in the general case, 
namely that one for which the discriminant of Equation (21) is always 
positive. (Interchange of the straight line segments results in the 
interchange of the vectors k and r. which in turn results in a sign 
change of the free term.) The gyrostat can rotate near such a segment in 
one or another direction but the angular velocities of these rotations 
will be different. We will explain these facts assuming that a vertical 
axis of rotation is given and will determine the conditions for which a 
permanent rotation about this axis is possible. 

The permanent rotation axis of a heavy gyrostat is located in the 
vertical plane (18) passing through the support point and possessing an 
invariable location in the gyrostat. In this plane is also located the 
constant vector K relative to the gyrostat. In such a case the weight 
q omentMg can be counter-balanced by a gyroscopic moment M = - (ox 
(K + k)) since both moments are directed along the straight line per- 
pendicular to the plane (18) which we will call, as in the case of a 
rigid body (5), the central vertical plane. 

The vertical axis of permanent rotation divides the central vertical 
plane in two half-planes. Then one can state that in order that the 
equality ill3 = - M take place, the center of gravity of the gyrostat must 
lie in the right central half-plane when looking from the end of the 
vector MI = - (o x K). Since the center of gravity of the gyrostat is 
prescribed, this means the following. 
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Of the two straight line segments forming the axis of permanent rota- 
tion, the one relative to which the gyrostat center of gravity is in the 

right-hand half-plane when viewed from the end of the MI vector, must be 

directed upward. 

The reversal of rotation about a given segment only reverses the sign 

of the gyroscopic moment Mu = - (o x k). Previous rotation is possible 
but the angular velocity will now be different. 

Let us consider a number of particular cases. 

(a) Let the inertia ellipsoid of the gyrostat be an ellipsoid of 

rotation, for example A = 6. Thereby the straight line (20) is located 

on the principal surface of inertia associated with that principal axis 

of inertia for which the moment of inertia is not equal to the two re- 

maining ones. In this case the equation for the straight line is given 

by 

Ryl. T R, y =- 0, z-o 

The angular velocity of the gyrostat for this axis is 

*=pF 
‘z 

In the case of a spherical ellipsoid of inertia Equations 

(22) 

(23) 

(15) and 

(19) become identities and the plane (18) for the permanent axes of the 

gyrostat is obtained. The angular velocity will be given, for example, 

by the equation 

o=P 
bzo - CYO 
bk, - ck?, 

(24) 

Any straight segment of the surface (18) can serve as a permanent 

axis of rotation, but the rotation can take place in one direction only. 

The angular velocity of rotation for the axis coinciding with the vector 

k is o= DO. For the axis passing through the center of gravity of the 

gyrostat 0 = 0, which corresponds to the equilibrium of the gyrostat 

when its center of gravity occupies the highest or the lowest position. 

(b) Let the projections of k and r. on two axes be proportional to 

each other, for example 

%7 Yo _=_ 
A”, k, 

In this case the cones (15) and (19) are intersected by these axes 

and touch along the third principal axis which serves as the permanent 
axis of rotation. The angular velocity of the gyrostat is 
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w_px” -p& 
k x k?, 

If the vector k of the gyrostatic moment passes through the center of 
gravity: 

x0 Yo ,_” 
k,=.‘(.. k, 

then the cones (15) and (19) coincide, while the plane (18) ceases to 
exist. Thus, in this case the geometric location of the permanent axes 
for a heavy gyrostat is the Mlodzeevski-Staude cone (19). 

The angular velocity will be determined from one of the following 
equations: 

(C - B) zo bc o2 + k,X (bzo -- cyo) w = P (bzo - cyo) IO 

(R - C) yo UC co2 + k, (ma - azo) o = I-’ ((..ro - azo) yo 

(B - A) zo ab o2 + ki (ayo - bra) w = P (nyo - bzo) zo 

(25) 

Unlike for the rigid body, the angular velocity of a heavy gyrostat 
for the principal axes of inertia is a finite quantity and equals 

Following Staude [ 6 I, we will refer to the half-generators of cone 
(19), for which Equations (25) give real values of o, as the admissible 
conditions of the problem and the remaining ones as not admissible. For 
an arbitrary value of the gyrostatic moment, the admissible conditions 
for a heavy gyrostat will be the same as those for a rigid body. However, 
if the gyrostatic moment is sufficiently large, then the permanent axis 
of rotation can be any half-generator of the cone (19). 

It may happen that all third-order determinants for the system of 
linear equations (6), (13) are zero while among the determinants of 
second order there are nonzero ones. This is possible for different 
particular admissions considered above. Using Equation (5), one may 
again find a constant solution for yl. yz. y3, i.e. the permanent axis 
will, as before, be vertical. 

A final possibility remains, namely, that there is only one independ- 
ent equation among the linear equations (6). (13). The permanent axis 
will not be vertical. 

Let the equations of system (13) follow from Equation (6); then the 
coefficients in these equations must be proportional: 
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Aa Bb Cc c I‘= (Aa’ _i- BP + Cc’) -- _ - --- 
Cl h c 12 + M” 

IX) 

Equations (261, (27) can be satisfied either by letting two of the 
cosines a, b, c equal zero, or by equating two moments of inertia A, B, 
C and making the cosine at the third moment zero, or by equating all 
three moments of inertia A, B, C. 

But if two moments of inertia are equal to each other, for example 
A = 8. then the moving axes x and y can always be chosen in such a way 
that a or b is zero. One may proceed analogously when A = B = C, i.e. all 
three cases can be reduced to one: one cosine equals unity and the other 
two are zero, for example 

a= 1, b = 0, c=o VW 

If one requires, in addition, that the vector lit of the gyrostatic 
moment be directed along that of the principal axes of inertia for which 
the cosine is unity, e, g. 

k, = k, = 0, k, = k (30) 

then Equation (28) will also be satisfied. 

On the strength of (29) and (30) we have L = Ax0 116 = N = 0. Since 
now do/dt f 0, then it follows from (8) that L = 0, i.e. x0 = 0. Further, 
Equation (‘7) becomes 

AT1 -$- = 0, i.e. yl = 0 

Then the angular velocity of the gyrostat is given by 

‘4% = P (zoTa - yard 

Consequently. since 6 = c = 0, in the given case the gyrostat rotates 
near one of the principal axes of inertia (in the case considered near 
the axis Ox), located horizontally; whereas the center of gravity of the 
gyrostat must be located in the principal inertia plane associated with 
that principal inertia axis near which the rotation takes place, while 
the gyrostatic moment must be directed along the axis of rotation. Thus. 
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this is the case of a common physical pendulum. 
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